Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38623956

RESUMO

Actin cytoskeleton plays an important role in various aspects of atherosclerosis, a key driver of ischemic heart disease. Actin-binding protein Profilin1 (Pfn1) is overexpressed in atherosclerotic plaques in human disease, and Pfn1, when partially depleted globally in all cell types, confers atheroprotection in vivo. This study investigates the impact of endothelial cell (EC)-specific partial loss of Pfn1 expression in atherosclerosis development. We utilized mice engineered for conditional heterozygous knockout of the Pfn1 gene in ECs, with atherosclerosis induced by depletion of hepatic LDL receptor by gene delivery of PCSK9 combined with high-cholesterol diet. Our studies show that partial depletion of EC Pfn1 has certain beneficial effects marked by dampening of select pro-atherogenic cytokines (CXCL10 and IL7) with concomitant reduction in cytotoxic T cell abundance but is not sufficient to reduce hyperlipidemia and confer atheroprotection in vivo. In light of these findings, we conclude that atheroprotective phenotype conferred by global Pfn1 haplo-insufficiency requires contributions of additional cell types that are relevant for atherosclerosis progression.

2.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38106044

RESUMO

Actin cytoskeleton plays an important role in various aspects of atherosclerosis, a key driver of ischemic heart disease. Actin-binding protein Profilin1 (Pfn1) is overexpressed in atherosclerotic plaques in human disease, and Pfn1, when partially depleted globally in all cell types, confers atheroprotection in vivo . This study investigates the impact of endothelial cell (EC)-specific partial loss of Pfn1 expression in atherosclerosis development. We utilized mice engineered for conditional heterozygous knockout of the Pfn1 gene in ECs, with atherosclerosis induced by depletion of hepatic LDL receptor by gene delivery of PCSK9 combined with high-cholesterol diet. Our studies show that partial depletion of EC Pfn1 has certain beneficial effects marked by dampening of select pro-atherogenic cytokines (CXCL10 and IL7) with concomitant reduction in cytotoxic T cell abundance but is not sufficient to reduce hyperlipidemia and confer atheroprotection in vivo . In light of these findings, we conclude that atheroprotective phenotype conferred by global Pfn1 haplo-insufficiency requires contributions of additional cell types that are relevant for atherosclerosis progression.

3.
J Biol Chem ; 300(1): 105583, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141770

RESUMO

Membrane polyphosphoinositides (PPIs) are lipid-signaling molecules that undergo metabolic turnover and influence a diverse range of cellular functions. PPIs regulate the activity and/or spatial localization of a number of actin-binding proteins (ABPs) through direct interactions; however, it is much less clear whether ABPs could also be an integral part in regulating PPI signaling. In this study, we show that ABP profilin1 (Pfn1) is an important molecular determinant of the cellular content of PI(4,5)P2 (the most abundant PPI in cells). In growth factor (EGF) stimulation setting, Pfn1 depletion does not impact PI(4,5)P2 hydrolysis but enhances plasma membrane (PM) enrichment of PPIs that are produced downstream of activated PI3-kinase, including PI(3,4,5)P3 and PI(3,4)P2, the latter consistent with increased PM recruitment of SH2-containing inositol 5' phosphatase (SHIP2) (a key enzyme for PI(3,4)P2 biosynthesis). Although Pfn1 binds to PPIs in vitro, our data suggest that Pfn1's affinity to PPIs and PM presence in actual cells, if at all, is negligible, suggesting that Pfn1 is unlikely to directly compete with SHIP2 for binding to PM PPIs. Additionally, we provide evidence for Pfn1's interaction with SHIP2 in cells and modulation of this interaction upon EGF stimulation, raising an alternative possibility of Pfn1 binding as a potential restrictive mechanism for PM recruitment of SHIP2. In conclusion, our findings challenge the dogma of Pfn1's binding to PM by PPI interaction, uncover a previously unrecognized role of Pfn1 in PI(4,5)P2 homeostasis and provide a new mechanistic avenue of how an ABP could potentially impact PI3K signaling byproducts in cells through lipid phosphatase control.


Assuntos
Fosfatidilinositóis , Profilinas , Fator de Crescimento Epidérmico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Fosfatidilinositóis/metabolismo , Humanos , Células HEK293 , Profilinas/metabolismo
4.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106226

RESUMO

Bone is a frequent site for breast cancer metastasis. Conditioning of local tumor microenvironment through crosstalk between tumor cells and bone resident cells in the metastatic niche is a major driving force for bone colonization of cancer cells. This study demonstrates that Myocardin-related transcription factor (MRTF - a major cofactor for the transcription factor serum-response factor, SRF) activity in breast cancer cells is required for their ability to promote osteoclast differentiation of bone marrow-derived monocytes and colonize in bone. MRTF depletion in breast cancer cells affects a wide range of cell-secreted osteoclast-regulatory factors including connective tissue growth factor (CTGF), a prominent bone metastasis-associated gene that exhibit strong positive association in expression with MRTF activity in human breast cancer. Rescue experiments demonstrate that CTGF is an important paracrine mediator of pro-osteoclastogenic action of MRTF in breast cancer cells. Both SRF-dependent and -independent (SAP-domain directed) functions of MRTF are required for its ability to regulate CTGF expression and osteoclast differentiation. In conclusion, this study uncovers a novel MRTF-directed tumor-extrinsic mechanism of bone colonization of cancer cells and suggest that MRTF inhibition could be a novel strategy to suppress osteoclast activity and skeletal involvement in metastatic breast cancer.

5.
PNAS Nexus ; 2(10): pgad305, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37781098

RESUMO

Actin-binding protein Profilin1 is an important regulator of actin cytoskeletal dynamics in cells and critical for embryonic development in higher eukaryotes. The objective of the present study was to examine the consequence of loss-of-function of Pfn1 in vascular endothelial cells (ECs) in vivo. We utilized a mouse model engineered for tamoxifen-inducible biallelic inactivation of the Pfn1 gene selectively in EC (Pfn1EC-KO). Widespread deletion of EC Pfn1 in adult mice leads to severe health complications presenting overt pathologies (endothelial cell death, infarct, and fibrosis) in major organ systems and evidence for inflammatory infiltrates, ultimately compromising the survival of animals within 3 weeks of gene ablation. Mice deficient in endothelial Pfn1 exhibit selective bias toward the proinflammatory myeloid-derived population of immune cells, a finding further supported by systemic elevation of proinflammatory cytokines. We further show that triggering Pfn1 depletion not only directly upregulates proinflammatory cytokine/chemokine gene expression in EC but also potentiates the paracrine effect of EC on proinflammatory gene expression in macrophages. Consistent with these findings, we provide further evidence for increased activation of Interferon Regulatory Factor 7 (IRF7) and STAT1 in EC when depleted of Pfn1. Collectively, these findings for the first time demonstrate a prominent immunological consequence of loss of endothelial Pfn1 and an indispensable role of endothelial Pfn1 in mammalian survival unlike tolerable phenotypes of Pfn1 loss in other differentiated cell types.

6.
J Biol Chem ; 299(8): 105044, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451478

RESUMO

Overexpression of actin-binding protein profilin-1 (Pfn1) correlates with advanced disease features and adverse clinical outcome of patients with clear cell renal carcinoma, the most prevalent form of renal cancer. We previously reported that Pfn1 is predominantly overexpressed in tumor-associated vascular endothelial cells in human clear cell renal carcinoma. In this study, we combined in vivo strategies involving endothelial cell-specific depletion and overexpression of Pfn1 to demonstrate a role of vascular endothelial Pfn1 in promoting tumorigenicity and enabling progressive growth and metastasis of renal carcinoma cells in a syngeneic orthotopic mouse model of kidney cancer. We established an important role of endothelial Pfn1 in tumor angiogenesis and further identified endothelial Pfn1-dependent regulation of several pro- (VEGF, SERPINE1, CCL2) and anti-angiogenic factors (platelet factor 4) in vivo. Endothelial Pfn1 overexpression increases tumor infiltration by macrophages and concomitantly diminishes tumor infiltration by T cells including CD8+ T cells in vivo, correlating with the pattern of endothelial Pfn1-dependent changes in tumor abundance of several prominent immunomodulatory cytokines. These data were also corroborated by multiplexed quantitative immunohistochemistry and immune deconvolution analyses of RNA-seq data of clinical samples. Guided by Upstream Regulator Analysis of tumor transcriptome data, we further established endothelial Pfn1-induced Hif1α elevation and suppression of STAT1 activation. In conclusion, this study demonstrates for the first time a direct causal relationship between vascular endothelial Pfn1 dysregulation, immunosuppressive tumor microenvironment, and disease progression with mechanistic insights in kidney cancer. Our study also provides a conceptual basis for targeting Pfn1 for therapeutic benefit in kidney cancer.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Profilinas , Microambiente Tumoral , Animais , Humanos , Camundongos , Carcinoma de Células Renais/genética , Células Endoteliais/metabolismo , Neoplasias Renais/genética , Profilinas/genética , Profilinas/metabolismo , Progressão da Doença
7.
bioRxiv ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38187641

RESUMO

Dysregulated actin cytoskeleton gives rise to aberrant cell motility and metastatic spread of tumor cells. The MRTF-SRF transcriptional complex plays a key role in regulating the expressions of actin cytoskeleton-modulatory genes. In this study, we demonstrate that MRTF's interaction with SRF is critical for migration and invasion of breast cancer cells. Disruption of the MRTF-SRF interaction suppresses membrane dynamics affecting the frequency and the effectiveness of membrane protrusion during cell motility. Consistent with these phenotypic changes, we further show that MRTF promotes actin polymerization at the leading edge, a key aspect of membrane protrusion, and migration of breast cancer cells through upregulating the expression of formin-family actin nucleating/elongating protein encoding gene DIAPH3 in an SRF-dependent manner. In support of these findings, multiplexed quantitative immunohistochemistry and transcriptome analyses of clinical specimens of breast cancer further demonstrate a positive correlation between nuclear localization of MRTF with malignant traits of cancer cells as well as enrichment of MRTF/SRF gene signature in distant metastases relative to primary tumors. In conclusion, this study for the first time links the MRTF/SRF signaling axis to cell migration through the regulation of a specific actin-binding protein, and provides evidence for an association between MRTF/SRF activity and malignancy in human breast cancer.

8.
FASEB Bioadv ; 4(8): 509-523, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35949508

RESUMO

Breast cancer (BC)-related mortality primarily results from metastatic colonization of disseminated cells. Actin polymerization plays an important role in driving post-extravasation metastatic outgrowth of tumor cells. This study examines the role of myocardin-related transcription factor (MRTF)/serum-response (SRF), a transcription system well known for regulation of cytoskeletal genes, in metastatic colonization of BC cells. We demonstrated that co-depletion of MRTF isoforms (MRTF-A and MRTF-B) dramatically impairs single-cell outgrowth ability of BC cells as well as retards growth progression of pre-established BC cell colonies in three-dimensional (3D) cultures. Conversely, overexpression of MRTF-A promotes initiation and progression of tumor-cell outgrowth in vitro, primary tumor formation, and metastatic outgrowth of seeded BC cells in vivo, and these changes can be dramatically blocked by molecular disruption of MRTF-A's interaction with SRF. Correlated with the outgrowth phenotypes, we further demonstrate MRTF's ability to augment the intrinsic cellular ability to polymerize actin and formation of F-actin-based protrusive structures requiring SRF's interaction. Pharmacological proof-of-concept studies show that small molecules capable of interfering with MRTF/SRF signaling robustly suppresses single-cell outgrowth and progression of pre-established outgrowth of BC cells in vitro as well as experimental metastatic burden of BC cells in vivo. Based on these data, we conclude that MRTF activity potentiates metastatic colonization of BC cells and therefore, targeting MRTF may be a promising strategy to diminish metastatic burden in BC.

9.
J Cell Physiol ; 237(5): 2387-2403, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35342955

RESUMO

Mitochondria perform diverse functions in the cell and their roles during processes such as cell survival, differentiation, and migration are increasingly being appreciated. Mitochondrial and actin cytoskeletal networks not only interact with each other, but this multifaceted interaction shapes their functional dynamics. The interrelation between mitochondria and the actin cytoskeleton extends far beyond the requirement of mitochondrial ATP generation to power actin dynamics, and impinges upon several major aspects of cellular physiology. Being situated at the hub of cell signaling pathways, mitochondrial function can alter the activity of actin regulatory proteins and therefore modulate the processes downstream of actin dynamics such as cellular migration. As we will discuss, this regulation is highly nuanced and operates at multiple levels allowing mitochondria to occupy a strategic position in the regulation of migration, as well as pathological events that rely on aberrant cell motility such as cancer metastasis. In this review, we summarize the crosstalk that exists between mitochondria and actin regulatory proteins, and further emphasize on how this interaction holds importance in cell migration in normal as well as dysregulated scenarios as in cancer.


Assuntos
Actinas , Neoplasias , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Movimento Celular , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo
10.
Exp Eye Res ; 213: 108861, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34822853

RESUMO

Aberrant angiogenesis lies at the heart of a wide range of ocular pathologies such as proliferative diabetic retinopathy, wet age-related macular degeneration and retinopathy of prematurity. This study explores the anti-angiogenic activity of a novel small molecule investigative compound capable of inhibiting profilin1-actin interaction recently identified by our group. We demonstrate that our compound is capable of inhibiting migration, proliferation and angiogenic activity of microvascular endothelial cells in vitro as well as choroidal neovascularization (CNV) ex vivo. In mouse model of laser-injury induced CNV, intravitreal administration of this compound diminishes sub-retinal neovascularization. Finally, our preliminary structure-activity relationship study (SAR) demonstrates that this small molecule compound is amenable to improvement in biological activity through structural modifications.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neovascularização de Coroide/tratamento farmacológico , Neovascularização Retiniana/tratamento farmacológico , Actinas/antagonistas & inibidores , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neovascularização de Coroide/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Humanos , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Profilinas/antagonistas & inibidores , Neovascularização Retiniana/metabolismo , Vasos Retinianos/citologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Degeneração Macular Exsudativa/tratamento farmacológico , Degeneração Macular Exsudativa/metabolismo
11.
J Cell Sci ; 134(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33961053

RESUMO

Dynamic remodeling of the actin cytoskeleton is an essential feature for virtually all actin-dependent cellular processes, including cell migration, cell cycle progression, chromatin remodeling and gene expression, and even the DNA damage response. An altered actin cytoskeleton is a structural hallmark associated with numerous pathologies ranging from cardiovascular diseases to immune disorders, neurological diseases and cancer. The actin cytoskeleton in cells is regulated through the orchestrated actions of a myriad of actin-binding proteins. In this Review, we provide a brief overview of the structure and functions of the actin-monomer-binding protein profilin-1 (Pfn1) and then discuss how dysregulated expression of Pfn1 contributes to diseases associated with the cardiovascular system.


Assuntos
Doenças Cardiovasculares , Profilinas , Citoesqueleto de Actina/genética , Actinas/genética , Doenças Cardiovasculares/genética , Humanos , Proteínas dos Microfilamentos , Profilinas/genética
12.
J Biol Chem ; 295(46): 15636-15649, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32883810

RESUMO

Clear-cell renal cell carcinoma (ccRCC), the most common subtype of renal cancer, has a poor clinical outcome. A hallmark of ccRCC is genetic loss-of-function of VHL (von Hippel-Lindau) that leads to a highly vascularized tumor microenvironment. Although many ccRCC patients initially respond to antiangiogenic therapies, virtually all develop progressive, drug-refractory disease. Given the role of dysregulated expressions of cytoskeletal and cytoskeleton-regulatory proteins in tumor progression, we performed analyses of The Cancer Genome Atlas (TCGA) transcriptome data for different classes of actin-binding proteins to demonstrate that increased mRNA expression of profilin1 (Pfn1), Arp3, cofilin1, Ena/VASP, and CapZ, is an indicator of poor prognosis in ccRCC. Focusing further on Pfn1, we performed immunohistochemistry-based classification of Pfn1 staining in tissue microarrays, which indicated Pfn1 positivity in both tumor and stromal cells; however, the vast majority of ccRCC tumors tend to be Pfn1-positive selectively in stromal cells only. This finding is further supported by evidence for dramatic transcriptional up-regulation of Pfn1 in tumor-associated vascular endothelial cells in the clinical specimens of ccRCC. In vitro studies support the importance of Pfn1 in proliferation and migration of RCC cells and in soluble Pfn1's involvement in vascular endothelial cell tumor cell cross-talk. Furthermore, proof-of-concept studies demonstrate that treatment with a novel computationally designed Pfn1-actin interaction inhibitor identified herein reduces proliferation and migration of RCC cells in vitro and RCC tumor growth in vivo Based on these findings, we propose a potentiating role for Pfn1 in promoting tumor cell aggressiveness in the setting of ccRCC.


Assuntos
Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Profilinas/metabolismo , Actinas/antagonistas & inibidores , Actinas/metabolismo , Animais , Proteína de Capeamento de Actina CapZ/genética , Proteína de Capeamento de Actina CapZ/metabolismo , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cofilina 1/genética , Cofilina 1/metabolismo , Bases de Dados Genéticas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Neoplasias Renais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Profilinas/antagonistas & inibidores , Profilinas/genética , Prognóstico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Microambiente Tumoral , Regulação para Cima
13.
Bio Protoc ; 10(8)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32656296

RESUMO

Cell migration is a fundamental cellular process that plays a crucial role in many physioglogical and pathological processes such as wound healing or cancer metastasis. Many assays have been developed to examine cell migration, such as the wound healing or scratch assay, Boyden Chamber or transwell assay, and the method we will describe here, single cell migration assay. In this assay, cells are plated sparsely on a collagen coated plate and live cell imaging is performed over a period of 2 h at 1 frame per minute. After imaging is completed, cells are tracked manually using ImageJ by tracking movement of the centroid of the cell. These data points are then exported and overall distance travelled from frame to frame is determined and divided by total time imaged to determine speed of the cell. This method provides a quick way to examine effect of cellular manipulation on cell migration before proceeding to perform more complex assays.

14.
Bio Protoc ; 10(8)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32601599

RESUMO

Kinases function as regulators of many cellular processes such as cell migration. These enzymes typically phosphorylate target motif sequences. Mass spec or phospho-specific antibody detection can be used to determine whether a kinase can phosphorylate proteins of interest, however, mass spec can be expensive and phospho-antibodies for the protein of interest may not exist. In this protocol, we will describe an in vitro kinase assay to provide a preliminary readout on whether a protein of interest may be phosphorylated by PKA. Our protein of interest is purified after expression in bacteria and treated with recombinant PKA from bovine heart. Protein is then extracted and a western blot is performed using a phospho-specific antibody for PKA's target motif. This will allow us to quickly determine if it is possible for PKA to phosphorylate our protein of interest.

15.
J Biol Chem ; 295(28): 9618-9629, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32444495

RESUMO

Angiogenesis-mediated neovascularization in the eye is usually associated with visual complications. Pathological angiogenesis is particularly prominent in the retina in the settings of proliferative diabetic retinopathy, in which it can lead to permanent loss of vision. In this study, by bioinformatics analyses, we provide evidence for elevated expression of actin-binding protein PFN1 (profilin1) in the retinal vascular endothelial cells (VECs) of individuals with proliferative diabetic retinopathy, findings further supported by gene expression analyses for PFN1 in experimentally induced abnormal retinal neovascularization in an oxygen-induced retinopathy murine model. We observed that in a conditional knockout mouse model, postnatal deletion of the Pfn1 gene in VECs leads to defects in tip cell activity (marked by impaired filopodial protrusions) and reduced vascular sprouting, resulting in hypovascularization during developmental angiogenesis in the retina. Consistent with these findings, an investigative small molecule compound targeting the PFN1-actin interaction reduced random motility, proliferation, and cord morphogenesis of retinal VECs in vitro and experimentally induced abnormal retinal neovascularization in vivo In summary, these findings provide the first direct in vivo evidence that PFN1 is required for formation of actin-based protrusive structures and developmental angiogenesis in the retina. The proof of concept of susceptibility of abnormal angiogenesis to small molecule intervention of PFN1-actin interaction reported here lays a conceptual foundation for targeting PFN1 as a possible strategy in angiogenesis-dependent retinal diseases.


Assuntos
Movimento Celular , Proliferação de Células , Células Endoteliais/metabolismo , Profilinas/metabolismo , Neovascularização Retiniana/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/patologia , Humanos , Camundongos , Camundongos Knockout , Oxigênio/metabolismo , Profilinas/genética , Neovascularização Retiniana/genética , Neovascularização Retiniana/patologia , Neovascularização Retiniana/terapia
16.
Int Forum Allergy Rhinol ; 10(3): 282-288, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31856397

RESUMO

BACKGROUND: Regenerated oxidized cellulose (ROC) sheets have gained popularity as an adjunct to a vascularized nasoseptal flap for closure of dural defects after endoscopic endonasal skull-base approaches (EESBS). However, evidence supporting its impact on the healing process is uncertain. This study was performed to evaluate the impact of ROC on the nasal mucosa and assess its effects on tissue pH, structure, and cell viability. METHODS: In 5 patients, a 1-cm2 piece of ROC gauze was placed on the surface of the middle turbinate before it was resected as part of a standard EESBS. Mucosa treated with ROC was separated from untreated mucosa and a histologic examination of structural changes in the respiratory epithelium was performed. To assess the effect of ROC on pH, increasing amounts of ROC were added to culture medium. Nasal fibroblasts viability was assessed in the presence of ROC before and after the pH was neutralized. RESULTS: Compared with unexposed controls, treated mucosa exhibited a higher incidence of cell necrosis and epithelial cell detachment. When added to Dulbecco's modified Eagle medium, ROC caused a dose-dependent decrease in pH of the medium. Only 1 ± 0.8% of cultured fibroblasts exposed to the ROC-induced acidic medium were alive, whereas 98.25 ± 0.5% of the cells were viable when the pH was neutralized (p < 0.001). CONCLUSION: ROC applied in vivo to nasal mucosa induced epithelial necrosis likely by diminishing the medium pH, because pH neutralization prevents its effect. The ultimate effect of this material on the healing process is yet to be determined.


Assuntos
Celulose Oxidada/farmacologia , Mucosa Nasal/efeitos dos fármacos , Cirurgia Endoscópica por Orifício Natural/reabilitação , Sobrevivência Celular/efeitos dos fármacos , Celulose Oxidada/uso terapêutico , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Concentração de Íons de Hidrogênio , Mucosa Nasal/patologia , Cirurgia Endoscópica por Orifício Natural/efeitos adversos , Necrose/induzido quimicamente , Retalhos Cirúrgicos/patologia , Conchas Nasais/patologia , Conchas Nasais/cirurgia , Cicatrização/efeitos dos fármacos
17.
J Biol Chem ; 294(17): 6972-6985, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30814249

RESUMO

Dynamic regulation of the actin cytoskeleton is an essential feature of cell motility. Action of Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP), a family of conserved actin-elongating proteins, is an important aspect of regulation of the actin cytoskeletal architecture at the leading edge that controls membrane protrusion and cell motility. In this study, we performed mutagenesis experiments in overexpression and knockdown-rescue settings to provide, for the first time, direct evidence of the role of the actin-binding protein profilin1 (Pfn1) in VASP-mediated regulation of cell motility. We found that VASP's interaction with Pfn1 is promoted by cell-substrate adhesion and requires down-regulation of PKA activity. Our experimental data further suggest that PKA-mediated Ser137 phosphorylation of Pfn1 potentially negatively regulates the Pfn1-VASP interaction. Finally, Pfn1's ability to be phosphorylated on Ser137 was partly responsible for the anti-migratory action elicited by exposing cells to a cAMP/PKA agonist. On the basis of these findings, we propose a mechanism of adhesion-protrusion coupling in cell motility that involves dynamic regulation of Pfn1 by PKA activity.


Assuntos
Moléculas de Adesão Celular/metabolismo , Adesão Celular , Movimento Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Profilinas/metabolismo , Células HEK293 , Humanos , Fosforilação , Profilinas/química , Ligação Proteica , Serina/metabolismo
18.
J Cell Sci ; 131(19)2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30309957

RESUMO

Actin-based cell migration is a fundamental cellular activity that plays a crucial role in a wide range of physiological and pathological processes. An essential feature of the remodeling of actin cytoskeleton during cell motility is the de novo synthesis of factors involved in the regulation of the actin cytoskeleton and cell adhesion in response to growth-factor signaling, and this aspect of cell migration is critically regulated by serum-response factor (SRF)-mediated gene transcription. Myocardin-related transcription factors (MRTFs) are key coactivators of SRF that link actin dynamics to SRF-mediated gene transcription. In this Review, we provide a comprehensive overview of the role of MRTF in both normal and cancer cell migration by discussing its canonical SRF-dependent as well as its recently emerged SRF-independent functions, exerted through its SAP domain, in the context of cell migration. We conclude by highlighting outstanding questions for future research in this field.


Assuntos
Movimento Celular , Fator de Resposta Sérica/metabolismo , Transativadores/metabolismo , Animais , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patologia , Domínios Proteicos , Transdução de Sinais , Transativadores/química
19.
Br J Cancer ; 119(9): 1106-1117, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30318519

RESUMO

BACKGROUND: Adhesion-mediated activation of FAK/ERK signalling pathway, enabled by the formation of filopodial protrusions (FLP), has been shown to be an important event for triggering of dormancy-to-proliferation switch and metastatic outgrowth of breast cancer cells (BCC). We studied the role of actin-binding protein profilin1 (Pfn1) in these processes. METHODS: Quantitative immunohistochemistry (IHC) of BC tissue microarray (TMA) and survival analyses of curated transcriptome datasets of BC patients were performed to examine Pfn1's association with certain clinicopathological features. FLP formation and single cell outgrowth of BCC were assessed using a 3D matrigel culture that accurately predicts dormant vs metastatic outgrowth phenotypes of BCC in certain microenvironment. Gene expression studies were performed to identify potential biological pathways that are perturbed under Pfn1-depleted condition. RESULTS: Lower Pfn1 expression is correlated with lower nuclear grade of breast tumours and longer relapse-free survival of BC patients. Pfn1 depletion leads to defects in FLP and outgrowth of BCC but without impairing either FAK or ERK activation. Guided by transcriptome analyses, we further showed that Pfn1 depletion is associated with prominent SMAD3 upregulation. Although knockdown and overexpression experiments revealed that SMAD3 has an inhibitory effect on the outgrowth of breast cancer cells, SMAD3 knockdown alone was not sufficient to enhance the outgrowth potential of Pfn1-depleted BCC suggesting that other proliferation-regulatory pathways in conjunction with SMAD3 upregulation may underlie the outgrowth-deficient phenotype of BCC cells upon depletion of Pfn1. CONCLUSION: Overall, these data suggest that Pfn1 may be a novel biomarker for BC recurrence and a possible target to reduce metastatic outgrowth of BCC.


Assuntos
Neoplasias da Mama/patologia , Técnicas de Cultura de Células/métodos , Profilinas/deficiência , Proteína Smad3/genética , Regulação para Cima , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Gradação de Tumores , Prognóstico , Transdução de Sinais , Análise de Sobrevida , Análise Serial de Tecidos , Microambiente Tumoral
20.
J Biol Chem ; 293(7): 2606-2616, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29282288

RESUMO

Profilin 1 (Pfn1) is an important regulator of the actin cytoskeleton and plays a vital role in many actin-based cellular processes. Therefore, identification of a small-molecule intervention strategy targeted against the Pfn1-actin interaction could have broad utility in cytoskeletal research and further our understanding of the role of Pfn1 in actin-mediated biological processes. Based on an already resolved Pfn1-actin complex crystal structure, we performed structure-based virtual screening of small-molecule libraries to seek inhibitors of the Pfn1-actin interaction. We identified compounds that match the pharmacophore of the key actin residues of Pfn1-actin interaction and therefore have the potential to act as competitive inhibitors of this interaction. Subsequent biochemical assays identified two candidate compounds with nearly identical structures that can mitigate the effect of Pfn1 on actin polymerization in vitro As a further proof-of-concept test for cellular effects of these compounds, we performed proximity ligation assays in endothelial cells (ECs) to demonstrate compound-induced inhibition of Pfn1-actin interaction. Consistent with the important role of Pfn1 in regulating actin polymerization and various fundamental actin-based cellular activities (migration and proliferation), treatment of these compounds reduced the overall level of cellular filamentous (F) actin, slowed EC migration and proliferation, and inhibited the angiogenic ability of ECs both in vitro and ex vivo In summary, this study provides the first proof of principle of small-molecule-mediated interference with the Pfn1-actin interaction. Our findings may have potential general utility for perturbing actin-mediated cellular activities and biological processes.


Assuntos
Actinas/metabolismo , Profilinas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/antagonistas & inibidores , Actinas/genética , Animais , Aorta Torácica/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Polimerização/efeitos dos fármacos , Profilinas/antagonistas & inibidores , Profilinas/química , Profilinas/genética , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...